Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Risk Assessment
Contact Us

Non-Redox Cycling Mechanisms of Oxidative Stress Induced by PM Metals

On this page:

  • Overview
  • Downloads
Metallic compounds contribute to the oxidative stress of ambient particulate matter (PM) exposure. The toxicity of redox inert ions of cadmium, mercury, lead and zinc, as well as redox-active ions of vanadium and chromium is underlain by dysregulation of mitochondrial function and loss of signaling quiescence. Central to the initiation of these effects is the interaction of metal ions with cysteinyl thiols on glutathione and key regulatory proteins, which leads to impaired mitochondrial electron transport and persistent pan-activation of signal transduction pathways. The mitochondrial and signaling effects are linked by the production of H2O2, generated from mitochondrial superoxide anion or through the activation of NADPH oxidase, which extends the range and amplifies the magnitude of the oxidative effects of the metals. This oxidative burden can be further potentiated by inhibitory effects of the metals on the enzymes of the glutathione and thioredoxin systems. Along with the better-known Fenton-based mechanisms, the non-redox cycling mechanisms of oxidative stress induced by metals constitute significant pathways for cellular injury induced by PM inhalation.

Impact/Purpose

This is an invited review article on the mechanisms of redox stress, a mechanism of injury increasingly recognized as a feature of the toxicity of many environmental agents. The article specifically reviews mechanisms that initiate AOP activated by metallic compounds found. associated with ambient particulate matter. This work informs risk assessment activities.

Citation

Samet, J., H. Chen, E. Pennington, AND P. Bromberg. Non-Redox Cycling Mechanisms of Oxidative Stress Induced by PM Metals. Elsevier Science Ltd, New York, NY, 151:26-37, (2020). [DOI: 10.1016/j.freeradbiomed.2019.12.027]

Download(s)

DOI: Non-Redox Cycling Mechanisms of Oxidative Stress Induced by PM Metals
  • Risk Assessment Home
  • About Risk Assessment
  • Risk Recent Additions
  • Human Health Risk Assessment
  • Ecological Risk Assessment
  • Risk Advanced Search
    • Risk Publications
  • Risk Assessment Guidance
  • Risk Tools and Databases
  • Superfund Risk Assessment
  • Where you live
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on August 18, 2020
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshots
  • Grants
  • No FEAR Act Data
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Open Government
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions

Follow.