Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Risk Assessment
Contact Us

Computational Approach to Link Chemicals in Anthropogenic Smoke Particulate Matter with Toxicity

On this page:

  • Overview
  • Downloads
A weighted chemical co-expression network analysis (WCCNA) was utilized to identify chemicals co-modulated to variable burning of anthropogenic materials and to link chemicals to biological responses (lung toxicity and mutagenicity). Polyaromatic hydrocarbons (PAHs) were co-modulated with increased concentrations in flaming smoke PM from the burning of plastic-containing materials, and showed significant association with increased neutrophil influx, cytokine levels, and mutagenicity. Inorganic elements were co-modulated with increased concentrations in flaming plywood and cardboard smoke PM and showed significant association with increased protein and albumin levels. This study shows the potential for using a computational network analysis to identify and prioritize hazardous chemical components within complex environmental mixtures and provides guidance on key chemical tracers required for intervention research to protect public health from the exposure.

Impact/Purpose

This study shows the potential for using a computational network analysis to identify and prioritize hazardous chemical components within complex environmental mixtures and provides guidance on key chemical tracers required for intervention research to protect public health from the exposure.

Citation

Kim, Yong Ho, J. Rager, I. jaspers, AND Matthew Gilmour. Computational Approach to Link Chemicals in Anthropogenic Smoke Particulate Matter with Toxicity. American Chemical Society, Washington, DC, 35(12):2210-2213, (2022). [DOI: 10.1021/acs.chemrestox.2c00270]

Download(s)

DOI: Computational Approach to Link Chemicals in Anthropogenic Smoke Particulate Matter with Toxicity
  • Risk Assessment Home
  • About Risk Assessment
  • Risk Recent Additions
  • Human Health Risk Assessment
  • Ecological Risk Assessment
  • Risk Advanced Search
    • Risk Publications
  • Risk Assessment Guidance
  • Risk Tools and Databases
  • Superfund Risk Assessment
  • Where you live
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on November 15, 2024
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshots
  • Grants
  • No FEAR Act Data
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Open Government
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions

Follow.