Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Risk Assessment
Contact Us

Exploring genetic influences on adverse outcome pathways using heuristic simulation and graph data science

On this page:

  • Overview
  • Downloads
Adverse outcome pathways provide a powerful tool for understanding the biological signaling cascades that lead to disease outcomes following toxicity. The framework outlines downstream responses known as key events, culminating in a clinically significant adverse outcome as a final result of the toxic exposure. Here we use the AOP framework combined with artificial intelligence methods to gain novel insights into genetic mechanisms that underlie toxicity-mediated adverse health outcomes. Specifically, we focus on liver cancer as a case study with diverse underlying mechanisms that are clinically significant. Our approach uses two complementary AI techniques: Generative modeling via automated machine learning and genetic algorithms, and graph machine learning. We used data from the US Environmental Protection Agency’s Adverse Outcome Pathway Database (AOP-DB; aopdb.epa.gov) and the UK Biobank’s genetic data repository. We use the AOP-DB to extract disease-specific AOPs and build graph neural networks used in our final analyses. We use the UK Biobank to retrieve real-world genotype and phenotype data, where genotypes are based on single nucleotide polymorphism data extracted from the AOP-DB, and phenotypes are case/control cohorts for the disease of interest (liver cancer) corresponding to those adverse outcome pathways. We also use propensity score matching to appropriately sample based on important covariates (demographics, comorbidities, and social deprivation indices) and to balance the case and control populations in our machine language training/testing datasets. Finally, we describe a novel putative risk factor for LC that depends on genetic variation in both the aryl-hydrocarbon receptor (AHR) and ATP binding cassette subfamily B member 11 (ABCB11) genes.

Impact/Purpose

This subproduct proposes a novel approach to gain understanding of the mechanisms underlying genetic influences on toxic adverse outcomes, without the inclusion of associated case-control information, that leverages two areas of Artificial Intelligence (AI), and subsequently, evaluates the approach in the context of toxicity-mediated adverse outcome pathways involved in liver cancer (LC).

Citation

Romano, J., L. Mei, J. Senn, J. Moore, AND H. Mortensen. Exploring genetic influences on adverse outcome pathways using heuristic simulation and graph data science. Elsevier B.V., Amsterdam, NETHERLANDS, 25:100261, (2023). [DOI: 10.1016/j.comtox.2023.100261]

Download(s)

DOI: Exploring genetic influences on adverse outcome pathways using heuristic simulation and graph data science
  • Risk Assessment Home
  • About Risk Assessment
  • Risk Recent Additions
  • Human Health Risk Assessment
  • Ecological Risk Assessment
  • Risk Advanced Search
    • Risk Publications
  • Risk Assessment Guidance
  • Risk Tools and Databases
  • Superfund Risk Assessment
  • Where you live
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on March 14, 2025
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshots
  • Grants
  • No FEAR Act Data
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Open Government
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions

Follow.