Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Risk Assessment
Contact Us

Assessing the Effects of Climate Change and Air Pollution on Soil Properties and Plant Diversity in Sugar Maple-Beech-Yellow Birch Hardwood Forests in the Northeastern United States: Model Simulations from 1900-2100

On this page:

  • Overview
  • Downloads
Historical deposition of nitrogen (N) and sulfur (S) over the Eastern United States has impacted ecosystem structure and function. The potential for recovery of ecosystems is relatively uncertain, with deposition paired with future climate change contributing to this uncertainty. The impacts of N and S deposition and climate change (from 1900 to 2100) on two sugar maple–beech–yellow birch sites in the Northeastern United States were evaluated using the paired biogeochemical–vegetation response model ForSAFE-Veg at two research sites, Hubbard Brook Experimental Forest and Bear Brook Watershed. Deposition was found to be the dominant stressor, causing changes in soil acid–base chemistry, N enrichment, and shifts in understory species composition. Responses of the two sites varied due primarily to differences in buffering capacity and levels of deposition. However, at both sites, recovery of soil and plant community properties to 1900 conditions was approached only when future deposition to 2100 was returned to pre-industrial levels. Policy-based reductions in deposition generally halted further damage to soils and plants and resulted in no or only partial recovery. Increased temperatures and precipitation according to Intergovernmental Panel on Climate Change (IPCC) climate futures stimulated soil and plant response, thereby accelerating changes in plant communities and N enrichment and counteracting the acidifying impacts of N and S deposition on soil acid–base chemistry.

Impact/Purpose

This is the second product from ACE 145 to model the interactive effects from climate change and nitrogen deposition on terrestrial ecosystem structure and function. This manuscript describes the interactive effects on these two global stressors on several ecosystem end points (e.g. leaching, soil acidification, biodiversity), for two pilot sites in the Northeast.

Citation

Phelan, J., S. Belyazid, P. Jones, J. Cajka, J. Buckley, AND C. Clark. Assessing the Effects of Climate Change and Air Pollution on Soil Properties and Plant Diversity in Sugar Maple-Beech-Yellow Birch Hardwood Forests in the Northeastern United States: Model Simulations from 1900-2100. Springer, New York, NY, 227:84, (2016). [DOI: 10.1007/s11270-016-2762-x]

Download(s)

DOI: Assessing the Effects of Climate Change and Air Pollution on Soil Properties and Plant Diversity in Sugar Maple-Beech-Yellow Birch Hardwood Forests in the Northeastern United States: Model Simulations from 1900-2100
  • Risk Assessment Home
  • About Risk Assessment
  • Risk Recent Additions
  • Human Health Risk Assessment
  • Ecological Risk Assessment
  • Risk Advanced Search
    • Risk Publications
  • Risk Assessment Guidance
  • Risk Tools and Databases
  • Superfund Risk Assessment
  • Where you live
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on May 20, 2024
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshots
  • Grants
  • No FEAR Act Data
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Open Government
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions

Follow.