Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Risk Assessment
Contact Us

Acute Differences in Pulse Wave Velocity, Augmentation Index, and Central Pulse Pressure Following Controlled Exposures to Cookstove Air Pollution in the Subclinical Tests of Volunteers Exposed to Smoke (SToVES) Study

On this page:

  • Overview
  • Downloads
Household air pollution emitted from solid-fuel cookstoves used for domestic cooking is a leading risk factor for morbidity and premature mortality globally. There have been attempts to design and distribute lower emission cookstoves, yet it is unclear if they meaningfully improve health. Using a crossover design, we assessed differences in central aortic hemodynamics and arterial stiffness following controlled exposures to air pollution emitted from five different cookstove technologies compared to a filtered air control. Forty-eight young, healthy participants were assigned to six 2-hour controlled treatments of pollution from five different cookstoves and a filtered air control. Each treatment had a target concentration for fine particulate matter: filtered air control = 0 μg/m3, liquefied petroleum gas = 10 μg/m3, gasifier = 35 μg/m3, fan rocket = 100 μg/m3, rocket elbow = 250 μg/m3, three stone fire = 500 μg/m3. Pulse wave velocity (PWV), central augmentation index (AIx), and central pulse pressure (CPP) were measured before and at three time points after each treatment (0, 3, and 24 hours). Linear mixed models were used to assess differences in the outcomes for each cookstove treatment compared to control. PWV and CPP were marginally higher 24 hours after all cookstove treatments compared to control. For example, PWV was 0.15 m/s higher (95% confidence interval: -0.02, 0.31) and CPP was 0.6 mmHg higher (95% confidence interval: -0.8, 2.1) 24 hours after the three stone fire treatment compared to control. The magnitude of the differences compared to control was similar across all cookstove treatments. PWV and CPP had no consistent trends at the other post-treatment time points (0 and 3 hours). No consistent trends were observed for AIx at any post-treatment time point. Our findings suggest higher levels of PWV and CPP within 24 hours after 2-hour controlled treatments of pollution from five different cookstove technologies. The similar magnitude of the differences following each cookstove treatment compared to control may indicate that acute exposures from even the cleanest cookstove technologies can adversely impact these subclinical markers of cardiovascular health, although differences were small and may not be clinically meaningful.

Impact/Purpose

The purpose of this study was to compare biological effects from emissions of 5 different cookstoves in humans. The information will help in the design of cookstoves that have lower emissions and fewer potential adverse health impacts.

Citation

Walker, E., K. Fedak, N. Good, J. Balmes, R. Brook, M. Clark, T. Cole-Hunter, F. Dinenno, R. Devlin, C. L-Orange, G. Luckasen, J. Mehaffy, R. Shelton, A. Wilson, J. Volckens, AND J. Peel. Acute Differences in Pulse Wave Velocity, Augmentation Index, and Central Pulse Pressure Following Controlled Exposures to Cookstove Air Pollution in the Subclinical Tests of Volunteers Exposed to Smoke (SToVES) Study. Elsevier B.V., Amsterdam, NETHERLANDS, 180:108831, (2020). [DOI: 10.1016/j.envres.2019.108831]

Download(s)

DOI: Acute Differences in Pulse Wave Velocity, Augmentation Index, and Central Pulse Pressure Following Controlled Exposures to Cookstove Air Pollution in the Subclinical Tests of Volunteers Exposed to Smoke (SToVES) Study
  • Risk Assessment Home
  • About Risk Assessment
  • Risk Recent Additions
  • Human Health Risk Assessment
  • Ecological Risk Assessment
  • Risk Advanced Search
    • Risk Publications
  • Risk Assessment Guidance
  • Risk Tools and Databases
  • Superfund Risk Assessment
  • Where you live
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on February 14, 2020
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshots
  • Grants
  • No FEAR Act Data
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Open Government
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions

Follow.