Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Risk Assessment
Contact Us

A comparison of design-based and model-based approaches for finite population spatial sampling and inferece.

On this page:

  • Overview
The design-based and model-based approaches to frequentist statistical inference rest on fundamentally different foundations. In the design-based approach, inference relies on random sampling. In the model-based approach, inference relies on distributional assumptions. We compare the approaches in a finite population spatial context. We provide relevant background for the design-based and model-based approaches and then study their performance using simulated data and real data. The real data is from the United States Environmental Protection Agency's 2012 National Lakes Assessment. A variety of sample sizes, location layouts, dependence structures, and response types are considered. The population mean is the parameter of interest, and performance is measured using statistics like bias, squared error, and interval coverage. When studying the simulated and real data, we found that regardless of the strength of spatial dependence in the data, the generalized random tessellation stratified (GRTS) algorithm, which explicitly incorporates spatial locations into sampling, tends to outperform the simple random sampling (SRS) algorithm, which does not explicitly incorporate spatial locations into sampling. We also found that model-based inference tends to outperform design-based inference, even for skewed data where the model-based distributional assumptions are violated. The performance gap between design-based inference and model-based inference is small when GRTS samples are used but large when SRS samples are used, suggesting that the sampling choice (whether to use GRTS or SRS) is most important when performing design-based inference. There are many benefits and drawbacks to the design-based and model-based approaches for finite population spatial sampling and inference that practitioners must consider when choosing between them. We provide relevant background contextualizing each approach and study their properties in a variety of scenarios, making recommendations for use based on the practitioner's goals.

Impact/Purpose

This presentation will clarify (to a statistical audience) how the design-based and model-based compare (from a theoretical and practical perspective) for finite population spatial data. We find that spatially balanced sampling greatly improves performance under the design-based or model-based inference approach, though the impact is greater for the design-based approach.  Given that many analyze data in both these manners and spatial data are everywhere, this talk will be of general relevance to the scientific and statistical communities.  We also describe the software used to carry out the study.

Citation

Dumelle, M. A comparison of design-based and model-based approaches for finite population spatial sampling and inferece. 2022 Joint Statistical Meetings, NA, DC, August 06 - 11, 2022.
  • Risk Assessment Home
  • About Risk Assessment
  • Risk Recent Additions
  • Human Health Risk Assessment
  • Ecological Risk Assessment
  • Risk Advanced Search
    • Risk Publications
  • Risk Assessment Guidance
  • Risk Tools and Databases
  • Superfund Risk Assessment
  • Where you live
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on August 15, 2022
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshots
  • Grants
  • No FEAR Act Data
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Open Government
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions

Follow.