Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Risk Assessment
Contact Us

Multidecadal molecular isotope records indicate pelagic benthic coupling through microbial pathways in the Gulf of Maine

On this page:

  • Overview
Pelagic-benthic coupling provides essential ecosystem functions, including energy transfer in surface and deep ocean food webs, regulation of biogeochemical cycling, and climate feed-back mechanisms. Despite its importance, access to long-term data sets of export production through different food web pathways are scarce. Therefore, to fill a critical data gap in our understanding of the patterns and drivers of variation in export production on ecologically relevant time scales, this study applied compound-specific stable nitrogen isotope analysis of amino acids to a 38 year (1981-2019) time series of pelagic copepod bioarchives (large-bodied Calanus finmarchicus and small-bodied Centropages typicus) and deep ocean bioarchives (deep-sea coral Primnoa resedaeformis) in the Gulf of Maine. Key metrics of food web dynamics that regulate export production were calculated including water nitrogen source (d15N), degree of heterotrophic microbial reworking on organic matter (∑V), and relative contribution to the trophic position of metazoan (TPGlx-Phe) and microbial (TPAla-Phe), all of which revealed strong pelagic-benthic coupling in both magnitude and temporal trend. As hypothesized, there was particularly strong agreement across all metrics between large-bodied C. finmarchicus and deep-sea P. resedaeformis, including a steady increase in the heterotrophic microbial reworking of exported production over time. The strong reliance of C. finmarchicus on microbial loop processes, including elevated TPAla-Phe transfers (4+/- 0.3) and a high level of ∑V (2.0 ± 0.5), was mirrored in P. resedaeformis, creating a direct mechanism to link surface microbial loop food web dynamics to the deep ocean through the biological pump. Identifying this strong microbial loop connectivity between the pelagic and benthic systems improves our understanding of Gulf of Maine export dynamics and our ability to better parameterize new mechanistic General Ecosystem Models.

Impact/Purpose

Understanding climate change requires understanding the past interactions of climate feed-back mechanisms between surface water and ocean waters.  Biocarchives hold information about these past interactions.  Here we examine bioarchive time series of pelagic copepod (large-bodied Calanus finmarchicus and small-bodied Centropages typicus) and deep ocean (deep-sea coral Primnoa resedaeformis) in the Gulf of Maine to understand pelagic-benthic coupling in both magnitude and temporal trend.  Using compound specific nitrogen stable isotopes, we were able to document strong microbial loop connectivity between the pelagic and benthic systems to understand how these interactions change through time.  

Citation

Nowakowski, C., K. Stamieszkin, N. Record, O. Sherwood, AND K. McMahon. Multidecadal molecular isotope records indicate pelagic benthic coupling through microbial pathways in the Gulf of Maine. AGU Ocean Sciences Meeting, New Orleans, LA, February 18 - 23, 2024.
  • Risk Assessment Home
  • About Risk Assessment
  • Risk Recent Additions
  • Human Health Risk Assessment
  • Ecological Risk Assessment
  • Risk Advanced Search
    • Risk Publications
  • Risk Assessment Guidance
  • Risk Tools and Databases
  • Superfund Risk Assessment
  • Where you live
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on March 15, 2024
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshots
  • Grants
  • No FEAR Act Data
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Open Government
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions

Follow.