Landscape heterogeneity and environmental dynamics improve predictions of establishment success of colonising small founding populations
In long-distance dispersal events, colonising species typically begin with a small number of founding individuals. A growing body of research suggests that establishment success of small founding populations can be determined by the context of the colonisation event and the new environment. Here, we illuminate the importance of these sources of context dependence. Using a spatially explicit, temporally dynamic, mechanistic, individual-based simulator of a model alien invader, the cane toad (Rhinella marina), we simulated colonisation scenarios to investigate how (1) the number of founding individuals, (2) thenumber of dispersal events, (3) landscape’s spatial composition and configuration of habitats (“spatially heterogenous landscapes”), and (4) timing of arrival with regards to dynamic environmental conditions (“dynamic environmental conditions”) influence the establishment success of small founding populations. We analysed the dynamic effects of these predictors on establishment success using a running-window logistic regression model. We showed establishment success increases with the number of founding individuals, whereas the number of dispersal events had a weak effect. At ≥ 20 foundingindividuals, propagule size swamps the effects of other factors, to whereby establishment success is near-certain (≥ 90%). But below this level, confidence in establishment success dramatically decreases as number of founding individuals decreases. At low numbers of founding individuals, the prominent predictors are landscape spatial heterogeneity and dynamic environmental conditions. For instance, compared to the annual mean, founding populations with ≤ 5 individuals have up to 18% higher establishment success when theyarrive in “packed” landscapes with relatively limited and clustered essential habitats and right before the breeding season. Accounting for landscape spatial heterogeneity and dynamic environmental conditions is integral in understanding and predicting population establishment and species colonisation. This additional complexity is necessary for advancing biogeographical theory and its application, such as in guiding speciesreintroduction efforts and invasive alien species management.