Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Risk Assessment
Contact Us

Toxicity of fresh and aged anthropogenic smoke particles emitted from different burning conditions

On this page:

  • Overview
  • Downloads
There is substantial evidence that photochemical reactions in the atmosphere cause physico-chemical transformation of combustion smoke, but how this processing modifies potential health effects in exposed populations is not well understood. Here we utilized a new approach to simulate photochemical aging of anthropogenic smoke emissions (a mixture of plastic, plywood, and cardboard smoke) from two different burning conditions (smoldering vs. flaming) and investigated their adverse outcomes associated with mutagenic activity and the relative potencies of different polycyclic aromatic hydrocarbons (PAHs). Aging resulted in increased oxygenated volatile organic compound (VOC) emissions but largely degraded particle-bound PAH components in the smoke. Chemical transformation during aging was more dramatic for flaming versus smoldering smoke. Due to the PAH degradation, mutagenicity of the aged smoke from flaming combustion was much lower (up to 4 times) than that of the fresh smoke on per-particle mass basis. However, on the basis of particle emitted per fuel mass burned, the aged and fresh smoke particles exhibited similar mutagenic activities, which were up to 3 times higher for smoldering versus flaming smoke emissions. Similarly, the PAH toxicity equivalent (PAH-TEQ) of the aged smoldering smoke was 3 times higher than that of the aged flaming smoke particles, suggesting that some PAHs (e.g., indeno[c,d]pyrene and benzo[b]fluoranthene) in the smoldering smoke were more photochemically stable during aging. These findings increase understanding of the evolution of smoke emitted at different burning conditions and the role of photochemical transformations on mutagenicity and PAH-induced toxicity.

Impact/Purpose

This study specifically represents an important investigation on wildland urban interface fire events and their photochemical changes in the air and mutagenicity responses. This study also represents an important advancement for the fields of environmental science, public health, toxicology, and address the growing public health crisis of wildfires.

Citation

Kim, Yong Ho, A. Sinha, I. George, D. DeMarini, A. Grieshop, AND Matthew Gilmour. Toxicity of fresh and aged anthropogenic smoke particles emitted from different burning conditions. Elsevier BV, AMSTERDAM, NETHERLANDS, 892:164778, (2023). [DOI: 10.1016/j.scitotenv.2023.164778]

Download(s)

DOI: Toxicity of fresh and aged anthropogenic smoke particles emitted from different burning conditions
  • Risk Assessment Home
  • About Risk Assessment
  • Risk Recent Additions
  • Human Health Risk Assessment
  • Ecological Risk Assessment
  • Risk Advanced Search
    • Risk Publications
  • Risk Assessment Guidance
  • Risk Tools and Databases
  • Superfund Risk Assessment
  • Where you live
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on June 06, 2025
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshots
  • Grants
  • No FEAR Act Data
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Open Government
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions

Follow.