Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Risk Assessment
Contact Us

Human Interindividual Variability In Susceptibility To Airborne Particles

On this page:

  • Overview
  • Downloads
Part of the explanation for the persistent epidemiological findings of associations between mortality and morbidity with relatively modest ambient exposures to airborne particles may be that some people are much more susceptible to particle-induced responses than others. This study assembled a database of quantitative observations of interindividual variability in pharmacokinetic and pharmacodynamic parameters likely to affect particle response. The pharmacodynamic responses studied included data drawn from epidemiologic studies of doses of methacholine, flour dust, and other agents that induce acute changes in lung function. In general, the amount of interindividual variability in several of these pharmacodynamic response parameters was greater than the variability in pharmacokinetic (breathing rate, deposition, and clearance) parameters. Quantitatively the results indicated that human interindividual variability of breathing rates and major pharmacokinetic parameterstotal deposition and tracheobronchial clearancewere in the region of Log(GSD) = 0.1 to 0.2 (corresponding to geometric standard deviations of 10.1 - 10.2 or 1.26 - 1.58). Deposition to the deep lung (alveolar region) appeared to be somewhat more variable: Log(GSD) of about 0.3 (GSD of about 2). Among pharmacodynamic parameters, changes in FEV1 in response to ozone and metabisulfite (an agent that is said to act primarily on neural receptors in the lung) were in the region of Log(GSD) of 0.2 to 0.4. However, similar responses to methacholine, an agent that acts on smooth muscle, seemed to have still more variability (0.4 to somewhat over 1.0, depending on the type of population studied). Similarly high values were suggested for particulate allergens. Central estimates of this kind of variability, and the close correspondence of the data to lognormal distributions, indicate that 99.9th percentile individuals are likely to respond at doses that are 150 to 450-fold less than would be needed in median individuals. It seems plausible that acute responses with this amount of variability could form part of the mechanistic basis for epidemiological observations of enhanced mortality in relation to ambient exposures to fine particles.

Citation

Hattis, D., A. Russ, R. Goble, P. Banati, AND M. Chu. Human Interindividual Variability In Susceptibility To Airborne Particles.

Download(s)

  • Human Interindividual Variability in Susceptibility to Airborne Particles
  • Risk Assessment Home
  • About Risk Assessment
  • Risk Recent Additions
  • Human Health Risk Assessment
  • Ecological Risk Assessment
  • Risk Advanced Search
    • Risk Publications
  • Risk Assessment Guidance
  • Risk Tools and Databases
  • Superfund Risk Assessment
  • Where you live
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on January 03, 2006
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshots
  • Grants
  • No FEAR Act Data
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Open Government
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions

Follow.